### AUTOMATICALLY LEARNS LOAD AT INITIAL POWER-UP



## • Hawkeye® TruStat™ 10F



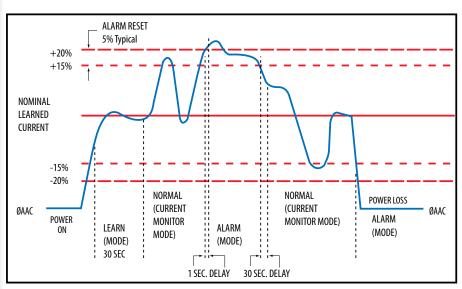
The self-calibrating, "smart" current switch

# **Current Switch: Auto Calibration, Standard Output**

The Hawkeye TruStat H10F is a microprocessor based, self-learning, self-calibrating current switch. It provides calibration-free motor status, for both undercurrent (belt-loss/mechanical failure) and over-current (locked rotor...) conditions. At initial power-up, the H10F automatically learns the average current on the line with no action required by the installer. Once a current is learned, the switch monitors for changes in current greater than  $\pm 20\%$  of the learned load.

#### **APPLICATIONS**

- Detecting belt loss, coupling shear, and mechanical failure
- Verifying lighting circuit and other electrical service run times
- Monitoring status of industrial process equipment
- Monitoring status of critical motors (compressor,


#### Automatic calibration...reduced errors and installation costs

- Microcontroller based learning technology... automatically learns load upon initial power-up... eliminates labor associated with calibration
- Monitors current for both under- and over-load in one package
- Small size fits easily inside small starter enclosures...saves space

#### Monitor status of fans, pumps & electrical loads

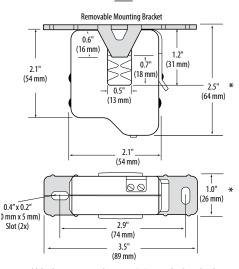
- Automatic adjustable trip point (3.5-100A)
- 100% solid state...no moving parts to fail
- Removable mounting bracket for installation flexibility
- 5-year warranty

#### **PRODUCT FUNCTIONS**



#### **SPECIFICATIONS**

| Sensor Power                        | Induced from monitored conductor                         |
|-------------------------------------|----------------------------------------------------------|
| Isolation                           | 600VAC RMS (UL); 300VAC RMS (CE)                         |
| Temperature Range                   | -15° to 60° C (5° to 140°F)                              |
| Humidity Range                      | 10-90% RH non-condensing                                 |
| Frequency Range                     | 50/60Hz                                                  |
| Trip Point Calibration Learn Period | 30 sec. learn period                                     |
| NORMAL-to-ALARM Status Output Delay | 1 second max.                                            |
| ALARM-to-NORMAL Status Output Delay | 30 seconds nominal*                                      |
| Agency Approvals                    | UL 508 open device listing                               |
|                                     | CE: EN61010-1:2001-02, CAT III, deg. 2, basic insulation |


<sup>\*</sup>If current switch experiences a momentary loss of power, 30 second delay may or may not apply. Do not use LED status indicators as evidence of applied voltage. For reinforced insulation contact the factory.



28

#### DIMENSIONAL DRAWING

H10F

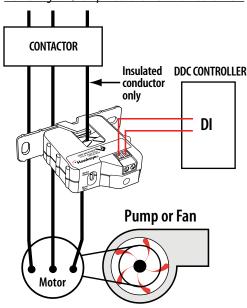


\* Terminal block may extend up to 1/8" over the height dimensions shown.

#### **HOW IT WORKS**

The compact split-core H10F current switch monitors a learned load current to detect belt loss/coupling shear, or mechanical failure, as well as power loss and electrical overload of fans, blowers, pumps, chillers, or any other critical motor functions. The push-button initiated LEARN MODE allows resetting of the monitored current when the load changes due to system alterations.

#### LEARN MODE


- Unit automatically enters LEARN MODE upon initial power-up
- Auto-calibration is achieved by averaging the load current for 30 seconds
- During this stage, green and red LEDs blink on/off
- STATUS OUTPUT contacts are closed
- LEARN MODE may be initiated manually

#### **NORMAL MODE**

- Initiated after the 30-second learning period, or immediately upon power-up if sensor has already learned a load
- The red LED is off, and the green LED is blinking
- STATUS OUTPUT contacts are closed

#### APPLICATION/WIRING EXAMPLE

Monitoring Fan /Pump Motors for Positive Proof of Flow



#### **ALARM MODE**

- The ALARM state signals low current, high current, or power loss
- Initiated within 1 second when any load current excursion exceeds a nominal ±20%
- ALARM will persist until the load current returns to within a nominal  $\pm 15\%$  of the learned current value, or when power is restored to normal
- The 5% ALARM-to-NORMAL MODE reentry margin prevents alarm signal oscillations. This feature is enhanced by a 30 second delay, to insure true nominal load current conditions when returning to NORMAL MODE from an ALARM state
- The green LED shuts off, and the red LED blinks
- STATUS OUTPUT contacts are open

| OPERATING<br>MODES | STATUS            | STATUS          |                 |  |
|--------------------|-------------------|-----------------|-----------------|--|
|                    | GREEN             | RED             | OUTPUT          |  |
| LEARN (30 secs)    | Alternating Blinl | Contacts Closed |                 |  |
| NORMAL             | Blink             | Off             | Contacts Closed |  |
| ALARM              | Off               | Blink           | Contacts Open   |  |

#### ORDERING INFORMATION







| MODEL | AMPERAGE RANGE | STATUS OUTPUT      | NOMINAL TRIP POINT<br>TARGET RANGE* | NOMINAL ALARM<br>RESET RANGE* | HOUSING    | STATUS LED | UL       | CE |
|-------|----------------|--------------------|-------------------------------------|-------------------------------|------------|------------|----------|----|
| H10F  | 3.5 - 100A     | N.O. 1.0A@30VAC/DC | ±20%                                | ±15%                          | Split-core |            | <b>1</b> |    |

<sup>\*</sup>For best performance, monitor 5A or more current. At currents less than 5A, these ranges are approximate.

#### **ACCESSORIES**

DIN Rail Clip Set, DIN Rail, and DIN Stop Clip...see page 219





<sup>&</sup>lt;sup>1</sup> Listed for use on 75°C insulated conductors.